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A space weather monitor at L5

1. Imaging the surface — see
what’'s coming over the limb

2. Imaging the corona and solar
wind along the Sun-Earth line

3. Measuring the solar wind
In-situ
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The Parker spiral
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There are different types of solar wind

« Fast solar wind (v=750km/s)
comes from coronal holes ULYSSES/SWOOPS Speed (km s )

Los Alamos
Space and Atmospherle Selences

e At solar minimum, polar
coronal holes dominate flow
— fast wind over the Sun’s
poles

« Slower (v=400 km/s), denser - __
(=2x) and more variable .- iy _
solar wind at low latitudes '
(from “streamer belt”

 Ecliptic plane: 7° to Sun’s
equator
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Solar maximum: no dominant polarity Image credit: McComas 2003
Coronal holes occur at any latitude
Fast and slow wind throughout — no latitude dependence in solar wind
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Dipole orientation vs. solar rotation axis
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Stream Interaction Regions (SIRS)
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London Hietala et al. 2014, Kilpua et al., 2015
doi: 10.1002/2015GL063542
Not all storms are created equal doi: 10.1002/2014GL059551

Storm list 1995-2013
Dst < —50nT: 398 storms — 193 suitable for the study
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S1: Sheath only S2: Ejectaonly 53:Sheath+ejecta  S4: SIR (85) Total (193)
(24) (28) (56)
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Implications for space weather forecasting

Probability of NOAA electron event warning

post-event relativistic e flux at GEO > 10"3 part/{(cm2 s sr)
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In situ measurements at L5

Stream interaction regions (SIRs):
« “co-rotate” with the Sun

« can be known as Co-rotating
Interaction Regions (CIRs)

« cause geomagnetic activity (storms and
substorms) depending on their
magnetic field structure

« are stronger at solar minimum

Magnetic field observations at L5:

« provide 4 - 5 day warning of
geoeffective SIRs

« constrain solar wind models and
forecasts SIRs are formed by fast wind

running into slow wind

[

. Rarefaction

(Owens & Forsyth 2013)
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In situ measurements at L5

October 2009, STEREO-B at L5

Bottom panel: AE index (auroral electrojet).
Geomagnetic activity on 11 October

Similar solar wind observed on 6 October by
STEREO-B at L5

More than four day warning

STEREO-B proof of concept
October 2009

STEREO-B proof of concept
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Interplanetary Field Enhancements (IFES)
’
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Interplanetary Field Enhancements (IFES)

 What are they?
* Obstacle travelling with the solar wind
« The only reasonable candidate is coherent body of fine scale charged dust
» Source: rock-rock collisions ie small meteroids into larger meteoroids
« Can in principle occur much more often but are too small to be seen telescopically
« Magnetic field measurements give rate of occurrence versus duration.

 Why are these important?

 NEOs have been hit in the recent past and material was eroded/broken off and is
co-orbiting with the main asteroid

« While we know where the NEO is, the material that was broken away from the
NEO can be ahead of or well behind the NEO now and it is dangerous down to
sizes of about 10m

« These IFEs are our only way of finding these regions of abundant rocks in
Near Earth Orbits

 Need multiple observing points around the Sun for good statistics
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IFEs: Charged Dust Clouds Picked Up by the Solar Wind

This IFE was detected §§”‘“ SRR i = —
by ACE, Wind, ’iw i L T L O
ARTEMIS P1, 5% | 1 BEE
ARTEMIS P2 and ik - it
Geotail simultaneously. o | Medp= — lmm"’m';m " rk‘ 80
A strong current sheet gsM §"' A S e
in the ambient E | wl'a_g ENE _;"UE
direction (Figure a) WE U U2 i SMah20l $ Maximum Field Strength
(a) (b)

The reconstructed magnetic field
geometry shows a draping
signature in the upstream and a
bending signature in the
downstream (Figure b).

In a simulation modeling solar wind
picking up charged dust cloud, we
see similar draping and bendlng
signatures in the magnetic field
lines (black lines in Figure c).
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Designing a magnetometer: step 1

Measurement requirements
Interplanetary Obs cycle Obs latency WMO cycle WMO lat L5 cycle L5 Latency
Magnetic Field

Bx, By, Bz &1min 3 min 1-60 sec 1-15min  ~1sec-1Tmin ~1-3min
B|

« Operational capability implies that the instrument must exhibit high

reliability and the instrument must provide continuous data flow 24/7 for
at least 10 years, at the specified accuracy.

The requirements are not set by the science community
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Designing a magnetometer: step 2

Sensor technology

« Magnetoresistive or Fluxgate?

* For top level science missions that require high reliability and accurate
measurement over decade(s) long investigations, a fluxgate
magnetometer is the obvious choice.

« Heritage is key to demonstrate operational levels of reliability:
* Cluster, Ulysses, Cassini, and DoubleStar
« Solar Orbiter and JUICE



Imperial College

Solar Orbiter magnetometer (EM)

solar orbiter
< THE SUN UP CLOSE




Imperial College But for some applications a lower
resource payload may be appropriate

Magneto-Resistive magnetometer sensor technology

The MAGIC of CINEMA: First in-flight science results from a
miniaturised anisotropic magnetoresistive magnetometer

M. O. Archer®", T. S. Hm'huryl._ P. Brm\'ul, J. P Easm'ﬂmll._ T. M. D(I[lj.'l, B. J. “']Jitesi[lel., and J. G. .‘Sﬂmplf2

ISpace and Atmospheric Physics, The Blackett Laboratory. Imperial College London., London, SW7 2AZ, UK.,
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Magneto-Resistive magnetometer sensor technology
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Sunjammer Engineering Model

Eastwood et al., Weather, 2015

Geostorm Sail
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Designing a magnetometer: step 3

Instrument concept
« Fully redundant: duplicate electronics and two sensors
« Sensors located in a magnetically clean and quiet environment

« Operational requirements for minimal data latency are more stringent
than science requirements (where a delay of months for calibrated data
can be acceptable)

 Place the sensors on a (long) boom
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Designing a magnetometer: step 4

How long should the boom be?

« Important to note that the instrument provider does not define the boom
length!

* A requirement on the magnetic environment at the sensor is placed
which the spacecraft manufacturer must meet

« Key issue: real time operations. We cannot spend 1 year
decontaminating the data (e.g. Venus Express)

» Therefore a longer boom may be needed than is the case on a science
mission (and no other instruments on the boom!)
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The end result: Magnetometer (MAG) technical details

Operational = continuous data flow 24/7 for more
than 10 years

Concept: fully redundant dual sensor fluxgate

Here uses same sensor and drive electronics as
Solar Orbiter: maximises heritage

Radiation tolerant, undergoing qualification

Meets and far exceeds measurement
requirements

Very high reliability and heritage

Instrument capabillities
Measurement |B|, Bx, By, Bz
Time resolution 1 vector/s
Measurement Range | £ 0.1 — 100 nT / axis
Relative accuracy 0.1 nT
Absolute accuracy 1.0 nT

Instrument properties

Power 6 W
Mass (inc.
harness) IO
Volume 16.5x 16.5 x 17
(electronics/ cm
sensor) 12.5x 12.5cm
Data rate 0.25 kbit/s
Sensors
Instrument mounted on s/c
accommodation | provided 5m
boom
Thermal -80degC to
environment +70degC
(operational/ -120degC to
non-op.) +90degC
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Summary

In situ measurements off the Sun-Earth line are crucial to understand the
properties of the solar wind for operational space weather purposes

The magnetic field is a crucial measurement:
» Geoeffective structure (SIRs, CIRSs)
« Data assimilation into forecast simulation models (e.g. ENLIL; CME sheath regions)
« Space weather at other planets?
« NEOs

Operational requirements are different from science requirements
« They are not easier to meet (require a cleaner magnetic environment)
« They are not necessarily cheaper to meet (high reliability, long lifetime)

High heritage instrumentation from top-level science missions means that
magnetic field instruments are ready and available for operational deep-space
space weather missions.



